JHUGen MELA  JHUGen v7.5.6, MELA v2.4.2
Matrix element calculations as used in JHUGen.
modmisc::operator(.dot.) Interface Reference

Public Member Functions

real(8) function minkowskyproduct (p1, p2)
 
complex(8) function minkowskyproductc (p1, p2)
 
complex(8) function minkowskyproductrc (p1, p2)
 
complex(8) function minkowskyproductcr (p1, p2)
 

Detailed Description

Definition at line 13 of file mod_Misc.F90.

Member Function/Subroutine Documentation

◆ minkowskyproduct()

real(8) function modmisc::operator(.dot.)::minkowskyproduct ( real(8), dimension(1:4), intent(in)  p1,
real(8), dimension(1:4), intent(in)  p2 
)

Definition at line 50 of file mod_Misc.F90.

50 implicit none
51 real(8), intent(in) :: p1(1:4),p2(1:4)
52 real(8) :: MinkowskyProduct
53 
54  minkowskyproduct = p1(1)*p2(1) &
55  - p1(2)*p2(2) &
56  - p1(3)*p2(3) &
57  -p1(4)*p2(4)

◆ minkowskyproductc()

complex(8) function modmisc::operator(.dot.)::minkowskyproductc ( complex(8), dimension(1:4), intent(in)  p1,
complex(8), dimension(1:4), intent(in)  p2 
)

Definition at line 61 of file mod_Misc.F90.

61 implicit none
62 complex(8), intent(in) :: p1(1:4),p2(1:4)
63 complex(8) :: MinkowskyProductC
64 
65  minkowskyproductc = p1(1)*p2(1) &
66  - p1(2)*p2(2) &
67  - p1(3)*p2(3) &
68  - p1(4)*p2(4)

◆ minkowskyproductcr()

complex(8) function modmisc::operator(.dot.)::minkowskyproductcr ( complex(8), dimension(1:4), intent(in)  p1,
real(8), dimension(1:4), intent(in)  p2 
)

Definition at line 84 of file mod_Misc.F90.

84 implicit none
85 real(8), intent(in) :: p2(1:4)
86 complex(8), intent(in) :: p1(1:4)
87 complex(8) :: MinkowskyProductCR
88 
89  minkowskyproductcr = p1(1)*p2(1) &
90  - p1(2)*p2(2) &
91  - p1(3)*p2(3) &
92  - p1(4)*p2(4)

◆ minkowskyproductrc()

complex(8) function modmisc::operator(.dot.)::minkowskyproductrc ( real(8), dimension(1:4), intent(in)  p1,
complex(8), dimension(1:4), intent(in)  p2 
)

Definition at line 72 of file mod_Misc.F90.

72 implicit none
73 real(8), intent(in) :: p1(1:4)
74 complex(8), intent(in) :: p2(1:4)
75 complex(8) :: MinkowskyProductRC
76 
77  minkowskyproductrc = p1(1)*p2(1) &
78  - p1(2)*p2(2) &
79  - p1(3)*p2(3) &
80  - p1(4)*p2(4)

The documentation for this interface was generated from the following file: