JHUGen MELA  JHUGen v7.5.6, MELA v2.4.2
Matrix element calculations as used in JHUGen.
RooqqZZ_JHU Class Reference

#include <RooqqZZ_JHU.h>

Inheritance diagram for RooqqZZ_JHU:
Collaboration diagram for RooqqZZ_JHU:

Public Member Functions

 RooqqZZ_JHU ()
 
 RooqqZZ_JHU (const char *name, const char *title, RooAbsReal &_m1j, RooAbsReal &_m2j, RooAbsReal &_h1j, RooAbsReal &_h2j, RooAbsReal &_phij, RooAbsReal &_hsj, RooAbsReal &_Phi1j, RooAbsReal &_mZZj)
 
 RooqqZZ_JHU (const RooqqZZ_JHU &other, const char *name=0)
 
virtual TObject * clone (const char *newname) const
 
virtual ~RooqqZZ_JHU ()
 
Int_t getAnalyticalIntegral (RooArgSet &allVars, RooArgSet &analVars, const char *rangeName=0) const
 
Double_t analyticalIntegral (Int_t code, const char *rangeName=0) const
 
Double_t partonicXS (double m1_c, double m2_c, double h1_c, double h2_c, double phi_c, double hs_c, double Phi1_c, double mZZ_c, bool upType, bool flipAxis) const
 
Double_t integratePartonicXS_Dh2DphDPh1_1 (double m1_c, double m2_c, double h1_c, double h2_c, double phi_c, double hs_c, double Phi1_c, double mZZ_c, bool upType, bool flipAxis) const
 
Double_t integratePartonicXS_Dh1DphDPh1_2 (double m1_c, double m2_c, double h1_c, double h2_c, double phi_c, double hs_c, double Phi1_c, double mZZ_c, bool upType, bool flipAxis) const
 
Double_t integratePartonicXS_Dh1Dh2Dph_3 (double m1_c, double m2_c, double h1_c, double h2_c, double phi_c, double hs_c, double Phi1_c, double mZZ_c, bool upType, bool flipAxis) const
 
Double_t integratePartonicXS_Dh1Dh2DPh1_4 (double m1_c, double m2_c, double h1_c, double h2_c, double phi_c, double hs_c, double Phi1_c, double mZZ_c, bool upType, bool flipAxis) const
 
Double_t integratePartonicXS_Dh1Dh2DphDPh1_5 (double m1_c, double m2_c, double h1_c, double h2_c, double phi_c, double hs_c, double Phi1_c, double mZZ_c, bool upType, bool flipAxis) const
 

Protected Member Functions

Double_t evaluate () const
 

Protected Attributes

RooRealProxy m1j
 
RooRealProxy m2j
 
RooRealProxy h1j
 
RooRealProxy h2j
 
RooRealProxy phij
 
RooRealProxy hsj
 
RooRealProxy Phi1j
 
RooRealProxy mZZj
 

Detailed Description

Definition at line 21 of file RooqqZZ_JHU.h.

Constructor & Destructor Documentation

◆ RooqqZZ_JHU() [1/3]

RooqqZZ_JHU::RooqqZZ_JHU ( )
inline

Definition at line 23 of file RooqqZZ_JHU.h.

23 {} ;

◆ RooqqZZ_JHU() [2/3]

RooqqZZ_JHU::RooqqZZ_JHU ( const char *  name,
const char *  title,
RooAbsReal &  _m1j,
RooAbsReal &  _m2j,
RooAbsReal &  _h1j,
RooAbsReal &  _h2j,
RooAbsReal &  _phij,
RooAbsReal &  _hsj,
RooAbsReal &  _Phi1j,
RooAbsReal &  _mZZj 
)

Definition at line 21 of file RooqqZZ_JHU.cc.

29  :
30 RooAbsPdf(name,title),
31 m1j("m1j","m1j",this,_m1j),
32 m2j("m2j","m2j",this,_m2j),
33 h1j("h1j","h1j",this,_h1j),
34 h2j("h2j","h2j",this,_h2j),
35 phij("phij","phij",this,_phij),
36 hsj("hsj","hsj",this,_hsj),
37 Phi1j("Phi1j","Phi1j",this,_Phi1j),
38 mZZj("mZZj","mZZj",this,_mZZj)
39 {
40 }

◆ RooqqZZ_JHU() [3/3]

RooqqZZ_JHU::RooqqZZ_JHU ( const RooqqZZ_JHU other,
const char *  name = 0 
)

Definition at line 43 of file RooqqZZ_JHU.cc.

43  :
44 RooAbsPdf(other,name),
45 m1j("m1j",this,other.m1j),
46 m2j("m2j",this,other.m2j),
47 h1j("h1j",this,other.h1j),
48 h2j("h2j",this,other.h2j),
49 phij("phij",this,other.phij),
50 hsj("hsj",this,other.hsj),
51 Phi1j("Phi1j",this,other.Phi1j),
52 mZZj("mZZj",this,other.mZZj)
53 {
54 }

◆ ~RooqqZZ_JHU()

virtual RooqqZZ_JHU::~RooqqZZ_JHU ( )
inlinevirtual

Definition at line 35 of file RooqqZZ_JHU.h.

35 { }

Member Function Documentation

◆ analyticalIntegral()

Double_t RooqqZZ_JHU::analyticalIntegral ( Int_t  code,
const char *  rangeName = 0 
) const

Definition at line 104 of file RooqqZZ_JHU.cc.

105 {
106 
107  double m1_c = m1j;
108  double m2_c = m2j;
109  double h1_c = h1j;
110  double h2_c = h2j;
111  double phi_c = phij;
112  double hs_c = hsj;
113  double Phi1_c = Phi1j;
114  double mZZ_c = mZZj;
115 
116 
117  switch(code)
118  {
119 
120  case 1:
121  {
122  double up_plusZ = integratePartonicXS_Dh2DphDPh1_1(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, true, true);
123  double up_minusZ = integratePartonicXS_Dh2DphDPh1_1(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, true, false);
124  double down_plusZ = integratePartonicXS_Dh2DphDPh1_1(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, false, true);
125  double down_minusZ = integratePartonicXS_Dh2DphDPh1_1(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, false, false);
126 
127  double upfrac = 0.5;
128  double downfrac = 0.5;
129 
130  //up_minusZ = 0; down_minusZ = 0;
131 
132  double totalxs = upfrac*(up_plusZ + up_minusZ) + downfrac*(down_plusZ + down_minusZ);
133  //std::cout << "case 1: up_plusZ = " << up_plusZ << ", up_minusZ = " << up_minusZ << ", down_plusZ = " << down_plusZ << ", down_minusZ = " << down_minusZ << std::endl;
134 
135  double jacobian = 1./(mZZj*mZZj);
136  return jacobian*totalxs ;
137  }
138  case 2:
139  {
140  double up_plusZ = integratePartonicXS_Dh1DphDPh1_2(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, true, true);
141  double up_minusZ = integratePartonicXS_Dh1DphDPh1_2(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, true, false);
142  double down_plusZ = integratePartonicXS_Dh1DphDPh1_2(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, false, true);
143  double down_minusZ = integratePartonicXS_Dh1DphDPh1_2(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, false, false);
144 
145  double upfrac = 0.5;
146  double downfrac = 0.5;
147 
148  //up_minusZ = 0; down_minusZ = 0;
149 
150  double totalxs = upfrac*(up_plusZ + up_minusZ) + downfrac*(down_plusZ + down_minusZ);
151  //std::cout << "case 2: up_plusZ = " << up_plusZ << ", up_minusZ = " << up_minusZ << ", down_plusZ = " << down_plusZ << ", down_minusZ = " << down_minusZ << std::endl;
152 
153  double jacobian = 1./(mZZj*mZZj);
154  return jacobian*totalxs ;
155  }
156  case 3:
157  {
158  double up_plusZ = integratePartonicXS_Dh1Dh2Dph_3(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, true, true);
159  double up_minusZ = integratePartonicXS_Dh1Dh2Dph_3(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, true, false);
160  double down_plusZ = integratePartonicXS_Dh1Dh2Dph_3(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, false, true);
161  double down_minusZ = integratePartonicXS_Dh1Dh2Dph_3(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, false, false);
162 
163  double upfrac = 0.5;
164  double downfrac = 0.5;
165 
166  //up_minusZ = 0; down_minusZ = 0;
167 
168  double totalxs = upfrac*(up_plusZ + up_minusZ) + downfrac*(down_plusZ + down_minusZ);
169  //std::cout << "case 3: up_plusZ = " << up_plusZ << ", up_minusZ = " << up_minusZ << ", down_plusZ = " << down_plusZ << ", down_minusZ = " << down_minusZ << std::endl;
170 
171  double jacobian = 1./(mZZj*mZZj);
172  return jacobian*totalxs ;
173  }
174  case 4:
175  {
176  double up_plusZ = integratePartonicXS_Dh1Dh2DPh1_4(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, true, true);
177  double up_minusZ = integratePartonicXS_Dh1Dh2DPh1_4(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, true, false);
178  double down_plusZ = integratePartonicXS_Dh1Dh2DPh1_4(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, false, true);
179  double down_minusZ = integratePartonicXS_Dh1Dh2DPh1_4(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, false, false);
180 
181  double upfrac = 0.5;
182  double downfrac = 0.5;
183 
184  //up_minusZ = 0; down_minusZ = 0;
185 
186  double totalxs = upfrac*(up_plusZ + up_minusZ) + downfrac*(down_plusZ + down_minusZ);
187  //std::cout << "case 4: up_plusZ = " << up_plusZ << ", up_minusZ = " << up_minusZ << ", down_plusZ = " << down_plusZ << ", down_minusZ = " << down_minusZ << std::endl;
188 
189  double jacobian = 1./(mZZj*mZZj);
190  return jacobian*totalxs ;
191  }
192  case 5:
193  {
194  double up_plusZ = integratePartonicXS_Dh1Dh2DphDPh1_5(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, true, true);
195  double up_minusZ = integratePartonicXS_Dh1Dh2DphDPh1_5(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, true, false);
196  double down_plusZ = integratePartonicXS_Dh1Dh2DphDPh1_5(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, false, true);
197  double down_minusZ = integratePartonicXS_Dh1Dh2DphDPh1_5(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, false, false);
198 
199  double upfrac = 0.5;
200  double downfrac = 0.5;
201 
202  //up_minusZ = 0; down_minusZ = 0;
203 
204  double totalxs = upfrac*(up_plusZ + up_minusZ) + downfrac*(down_plusZ + down_minusZ);
205  //std::cout << "case 5: up_plusZ = " << up_plusZ << ", up_minusZ = " << up_minusZ << ", down_plusZ = " << down_plusZ << ", down_minusZ = " << down_minusZ << std::endl;
206 
207  double jacobian = 1./(mZZj*mZZj);
208  return jacobian*totalxs ;
209  }
210 
211  }
212  assert(0) ;
213  return 0 ;
214 }

◆ clone()

virtual TObject* RooqqZZ_JHU::clone ( const char *  newname) const
inlinevirtual

Definition at line 34 of file RooqqZZ_JHU.h.

34 { return new RooqqZZ_JHU(*this,newname); }

◆ evaluate()

Double_t RooqqZZ_JHU::evaluate ( ) const
protected

Definition at line 58 of file RooqqZZ_JHU.cc.

59 {
60  // Do transformation of the angles from JHU to NW conventions...
61 
62 
63  double m1_c = m1j;
64  double m2_c = m2j;
65  double h1_c = h1j;
66  double h2_c = h2j;
67  double phi_c = phij;
68  double hs_c = hsj;
69  double Phi1_c = Phi1j;
70  double mZZ_c = mZZj;
71 
72  // ENTER EXPRESSION IN TERMS OF VARIABLE ARGUMENTS HERE
73  double up_plusZ = partonicXS(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, true, true);
74  double up_minusZ = partonicXS(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, true, false);
75  double down_plusZ = partonicXS(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, false, true);
76  double down_minusZ = partonicXS(m1_c, m2_c, h1_c, h2_c, phi_c, hs_c, Phi1_c, mZZ_c, false, false);
77 
78  //std::cout << "up_plusZ = " << up_plusZ << ", up_minusZ = " << up_minusZ << ", down_plusZ = " << down_plusZ << ", down_minusZ = " << down_minusZ << std::endl;
79 
80  double upfrac = 0.5;
81  double downfrac = 0.5;
82 
83  //up_minusZ = 0; down_minusZ = 0;
84 
85  double totalxs = upfrac*(up_plusZ + up_minusZ) + downfrac*(down_plusZ + down_minusZ);
86 
87  double jacobian = 1./(mZZj*mZZj);
88  return jacobian*totalxs ;
89 }

◆ getAnalyticalIntegral()

Int_t RooqqZZ_JHU::getAnalyticalIntegral ( RooArgSet &  allVars,
RooArgSet &  analVars,
const char *  rangeName = 0 
) const

Definition at line 92 of file RooqqZZ_JHU.cc.

93 {
94 
95  // these are the variables you integrated out!
96  if (matchArgs(allVars,analVars,h1j,h2j,phij,Phi1j)) return 5 ;
97  if (matchArgs(allVars,analVars,h2j,phij,Phi1j)) return 1 ;
98  if (matchArgs(allVars,analVars,h1j,phij,Phi1j)) return 2 ;
99  if (matchArgs(allVars,analVars,h1j,h2j,phij)) return 3 ;
100  if (matchArgs(allVars,analVars,h1j,h2j,Phi1j)) return 4 ;
101  return 0 ;
102 
103 }

◆ integratePartonicXS_Dh1Dh2DPh1_4()

Double_t RooqqZZ_JHU::integratePartonicXS_Dh1Dh2DPh1_4 ( double  m1_c,
double  m2_c,
double  h1_c,
double  h2_c,
double  phi_c,
double  hs_c,
double  Phi1_c,
double  mZZ_c,
bool  upType,
bool  flipAxis 
) const

Definition at line 1002 of file RooqqZZ_JHU.cc.

1003 {
1004  // define hs, h1, h2, phi1, phi2 for the NW angular conventions
1005  double s = mZZ_c*mZZ_c;
1006  double M1 = m1_c;
1007  double M2 = m2_c;
1008  double hs = hs_c;
1009  //double h1 = h1_c;
1010  //double h2 = h2_c;
1011  double phi = phi_c;
1012  double Phi1 = Phi1_c;
1013 
1014  if (flipAxis){
1015  hs *= -1.;
1016  Phi1 += TMath::Pi();
1017  //phi += 0;
1018  }
1019 
1020  // extra definitions needed
1021  double shs = Sqrt(1-hs*hs); // sin Theta
1022  //double sh1 = Sqrt(1-h1*h1); // sin theta1
1023  //double sh2 = Sqrt(1-h2*h2); // sin theta2
1024  double hsdb = 1 - 2*shs*shs; // cos 2*Theta
1025  double shsdb = 2*hs*shs; // sin 2*Theta
1026  //double h1db = 1 - 2*sh1*sh1; // cos 2*theta1 NOT USED
1027  //double h2db = 1 - 2*sh2*sh2; // cos 2*theta2 NOT USED
1028 
1029  double x = (M1*M1-M2*M2)/s;
1030  double beta1 = Sqrt(1. - (4.*M1*M1)/(s*(1+x)*(1+x)));
1031  double beta2 = Sqrt(1. - (4.*M2*M2)/(s*(1+x)*(1+x)));
1032  double MZ = 91.18; // mass of the Z
1033  double gamma = 2.475; // width of the Z
1034  double xW = 0.2312; // sin2thetaW
1035  double Pi = TMath::Pi();
1036  double alpha = 1./137; // EM constant
1037 
1038  double Tf3 = -1/2.; double Qf = -1.;
1039  double gL = 2.*(Tf3 - xW*Qf), gR = -2.*xW*Qf;
1040 
1041  double qTf3, qQf;
1042  if (upType){
1043  qTf3 = 1/2.; qQf = 2./3.;
1044  }
1045  else{
1046  qTf3 = -1/2.; qQf = -1./3.;
1047  }
1048  double gqL = 2.*(qTf3 - xW*qQf), gqR = -2.*xW*qQf;
1049 
1050  const int nterms = 14;
1051  double term[nterms];
1052 
1054  term[0] = -(Power(alpha,4)*beta1*(Power(gqL,4) + Power(gqR,4))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
1055  Power(M2,2)*(1 + x)*Cos(2*(phi + Pi))*(x + beta1*beta2*x + hs - beta1*beta2*hs)*
1056  (x + beta1*beta2*x + (-1 + beta1*beta2)*hs)*Power(shs,2))/
1057  (55296.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1058  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + xW,4)*
1059  Power(xW,4)*Power(-1 - Power(beta1,2)*Power(beta2,2) + Power(x + beta1*beta2*x,2) +
1060  2*beta1*beta2*hsdb,2)) ;
1061 
1062  term[1] = - (Power(alpha,4)*beta1*Power(gL - gR,2)*Power(gL + gR,2)*
1063  Power(M1,2)*Power(M2,2)*(1 + x)*((beta1 + beta2 - beta1*x + beta2*x)*
1064  Sqrt(beta1*beta2*(1 - Power(x,2))) + (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)))*
1065  Cos(phi)*hs*((1 + beta1*beta2)*(Power(gqL,4) - Power(gqR,4))*x -
1066  (-1 + beta1*beta2)*(Power(gqL,4) + Power(gqR,4))*hs)*Power(shs,2))/
1067  (98304.*Sqrt((-1 + Power(beta1,2))*(-1 + Power(beta2,2)))*
1068  (Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1069  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*s*(1 - Power(x,2))*
1070  Power(-1 + xW,4)*Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
1071  4*beta1*beta2*Power(shs,2),2)) ;
1072 
1073  term[2] = - (Power(alpha,4)*beta1*Power(-Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*(1 + x)*
1074  ((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) +
1075  (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)))*Cos(phi)*hs*
1076  ((1 + beta1*beta2)*(-Power(gqL,4) + Power(gqR,4))*x -
1077  (-1 + beta1*beta2)*(Power(gqL,4) + Power(gqR,4))*hs)*Power(shs,2))/
1078  (98304.*Sqrt((-1 + Power(beta1,2))*(-1 + Power(beta2,2)))*
1079  (Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1080  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*s*(1 - Power(x,2))*
1081  Power(-1 + xW,4)*Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
1082  4*beta1*beta2*Power(shs,2),2)) ;
1083 
1084  term[3] = (Power(alpha,4)*beta1*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*(1 + x)*
1085  (Power(gqR,4)*Power(x + beta1*beta2*x + hs - beta1*beta2*hs,2) +
1086  Power(gqL,4)*Power(x + beta1*beta2*x + (-1 + beta1*beta2)*hs,2))*Power(shs,2))/
1087  (27648.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1088  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + xW,4)*
1089  Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
1090  4*beta1*beta2*Power(shs,2),2)) ;
1091 
1092  term[4] = (Power(alpha,4)*beta1*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*(1 + x)*
1093  (Power(gqL,4)*Power(x + beta1*beta2*x + hs - beta1*beta2*hs,2) +
1094  Power(gqR,4)*Power(x + beta1*beta2*x + (-1 + beta1*beta2)*hs,2))*Power(shs,2))/
1095  (27648.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1096  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + xW,4)*
1097  Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
1098  4*beta1*beta2*Power(shs,2),2)) ;
1099 
1100  term[5] = (Power(alpha,4)*beta1*Power(1 + beta1*beta2,2)*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
1101  Power(M2,2)*(1 + x)*Power(shs,2)*
1102  (Power(gqR,4)*Power(1 + hs,4) + Power(gqL,4)*Power(shs,4)))/
1103  (27648.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1104  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + xW,4)*
1105  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
1106  4*beta1*beta2*Power(shs,2),2)) ;
1107 
1108  term[6] = (Power(alpha,4)*beta1*Power(1 + beta1*beta2,2)*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
1109  Power(M2,2)*(1 + x)*Power(shs,2)*
1110  (Power(gqL,4)*Power(1 + hs,4) + Power(gqR,4)*Power(shs,4)))/
1111  (27648.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1112  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + xW,4)*
1113  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
1114  4*beta1*beta2*Power(shs,2),2)) ;
1115 
1116  term[7] = (Power(alpha,4)*beta1*(1 - Power(beta1,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*
1117  (1 + x)*(Power(gqR,4)*Power(1 + hs,4)*
1118  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1119  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs,2) +
1120  Power(gqL,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1121  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs,2)*
1122  Power(shs,4)))/
1123  (221184.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1124  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + x,2)*
1125  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
1126  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)
1127  ) ;
1128 
1129  term[8] = (Power(alpha,4)*beta1*(1 - Power(beta1,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
1130  Power(M2,2)*(1 + x)*(Power(gqL,4)*Power(1 + hs,4)*
1131  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1132  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs,2) +
1133  Power(gqR,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1134  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs,2)*
1135  Power(shs,4)))/
1136  (221184.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1137  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + x,2)*
1138  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
1139  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)
1140  ) ;
1141 
1142  term[9] = - (Power(alpha,4)*beta1*Sqrt((1 - Power(beta1,2))*(1 - Power(beta2,2)))*(gL - gR)*(gL + gR)*
1143  (-Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(phi)*
1144  (Power(gqR,4)*Power(1 + hs,4)*
1145  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1146  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs)*
1147  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1148  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs) +
1149  Power(gqL,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1150  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*
1151  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1152  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,4))
1153  )/(1.572864e6*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1154  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*s*(1 - Power(x,2))*
1155  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
1156  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)
1157  );
1158 
1159  term[10] = - (Power(alpha,4)*beta1*Sqrt((1 - Power(beta1,2))*(1 - Power(beta2,2)))*(gL - gR)*(gL + gR)*
1160  (-Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(phi)*
1161  (Power(gqL,4)*Power(1 + hs,4)*
1162  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1163  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs)*
1164  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1165  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs) +
1166  Power(gqR,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1167  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*
1168  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1169  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,4))
1170  )/(1.572864e6*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1171  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*s*(1 - Power(x,2))*
1172  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
1173  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)
1174  ) ;
1175 
1176  term[11] = (Power(alpha,4)*beta1*(1 - Power(beta2,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
1177  Power(M2,2)*(Power(gqR,4)*Power(1 + hs,4)*
1178  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1179  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs,2) +
1180  Power(gqL,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1181  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs,2)*
1182  Power(shs,4)))/
1183  (221184.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1184  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*(1 + x)*
1185  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
1186  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)
1187  ) ;
1188 
1189  term[12] = (Power(alpha,4)*beta1*(1 - Power(beta2,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
1190  Power(M2,2)*(Power(gqL,4)*Power(1 + hs,4)*
1191  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1192  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs,2) +
1193  Power(gqR,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1194  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs,2)*
1195  Power(shs,4)))/
1196  (221184.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1197  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*(1 + x)*
1198  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
1199  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)
1200  ) ;
1201 
1202  term[13] = (Power(alpha,4)*beta1*(Power(gqL,4) + Power(gqR,4))*Power(Power(gL,2) + Power(gR,2),2)*
1203  Power(M1,2)*Power(M2,2)*(1 + x)*Power((beta1 + beta2 - beta1*x + beta2*x)*
1204  Sqrt(beta1*beta2*(1 - Power(x,2))) + (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)),2)*
1205  Power(shsdb,2))/
1206  (27648.*(-1 + Power(beta1,2))*(-1 + Power(beta2,2))*
1207  (Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1208  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*
1209  Power(-1 + Power(x,2),2)*Power(-1 + xW,4)*Power(xW,4)*
1210  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)
1211  );
1212 
1213  double returnVal = 0.;
1214  for (int i = 0; i < nterms; i++){
1215  //std::cout << "term[" << i << "] = " << term[i] << std::endl;
1216  if (term[i] != term[i]) {
1217  //std::cout << "isNaN" << std::endl;
1218  term[i] = 0.;
1219  }
1220  returnVal += term[i];
1221  }
1222 
1223  if (returnVal <= 0) returnVal = 1.e-40;
1224  return returnVal;
1225 
1226 }

◆ integratePartonicXS_Dh1Dh2Dph_3()

Double_t RooqqZZ_JHU::integratePartonicXS_Dh1Dh2Dph_3 ( double  m1_c,
double  m2_c,
double  h1_c,
double  h2_c,
double  phi_c,
double  hs_c,
double  Phi1_c,
double  mZZ_c,
bool  upType,
bool  flipAxis 
) const

Definition at line 709 of file RooqqZZ_JHU.cc.

710 {
711  // define hs, h1, h2, phi1, phi2 for the NW angular conventions
712  double s = mZZ_c*mZZ_c;
713  double M1 = m1_c;
714  double M2 = m2_c;
715  double hs = hs_c;
716  // double h1 = h1_c;
717  // double h2 = h2_c;
718  //double phi = phi_c; NOT USED !!
719  double Phi1 = Phi1_c;
720 
721  if (flipAxis){
722  hs *= -1.;
723  Phi1 += TMath::Pi();
724  //phi += 0;
725  }
726 
727  /*
728  std::cout << "-----------" << std::endl;
729  std::cout << "h1 = " << h1 << "; " << std::endl;
730  std::cout << "h2 = " << h2 << "; " << std::endl;
731  std::cout << "hs = " << hs << "; " << std::endl;
732  std::cout << "phi = " << phi << "; " << std::endl;
733  std::cout << "Phi1 = " << Phi1 << "; " << std::endl;
734  //
735  */
736 
737  // extra definitions needed
738  double shs = Sqrt(1-hs*hs); // sin Theta
739  //double sh1 = Sqrt(1-h1*h1); // sin theta1
740  //double sh2 = Sqrt(1-h2*h2); // sin theta2
741  double hsdb = 1 - 2*shs*shs; // cos 2*Theta
742  double shsdb = 2*hs*shs; // sin 2*Theta
743  //double h1db = 1 - 2*sh1*sh1; // cos 2*theta1 NOT USED
744  //double h2db = 1 - 2*sh2*sh2; // cos 2*theta2 NOT USED!!
745 
746  double x = (M1*M1-M2*M2)/s;
747  double beta1 = Sqrt(1. - (4.*M1*M1)/(s*(1+x)*(1+x)));
748  double beta2 = Sqrt(1. - (4.*M2*M2)/(s*(1+x)*(1+x)));
749  double MZ = 91.18; // mass of the Z
750  double gamma = 2.475; // width of the Z
751  double xW = 0.2312; // sin2thetaW
752  double Pi = TMath::Pi();
753  double alpha = 1./137; // EM constant
754 
755  double Tf3 = -1/2.; double Qf = -1.;
756  double gL = 2.*(Tf3 - xW*Qf), gR = -2.*xW*Qf;
757 
758  double qTf3, qQf;
759  if (upType){
760  qTf3 = 1/2.; qQf = 2./3.;
761  }
762  else{
763  qTf3 = -1/2.; qQf = -1./3.;
764  }
765  double gqL = 2.*(qTf3 - xW*qQf), gqR = -2.*xW*qQf;
766 
767  /*
768  std::cout << "-----------" << std::endl;
769  std::cout << "beta1 = " << beta1 << "; " << std::endl;
770  std::cout << "beta2 = " << beta2 << "; " << std::endl;
771  std::cout << "gL = " << gL << "; " << std::endl;
772  std::cout << "gR = " << gR << "; " << std::endl;
773  std::cout << "gqL = " << gqL << "; " << std::endl;
774  std::cout << "gqR = " << gqR << "; " << std::endl;
775  //
776  */
777 
778  const int nterms = 18;
779  double term[nterms];
780 
782  term[0] = (Power(alpha,4)*beta1*(-1 + Power(beta2,2))*(Power(gqL,4) + Power(gqR,4))*
783  Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*Cos(2*(-Phi1 + Pi))*
784  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
785  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs)*
786  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
787  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,2))/
788  (221184.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
789  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*(1 + x)*
790  Power(-1 + xW,4)*Power(xW,4)*Power(-1 - Power(beta1,2)*Power(beta2,2) +
791  Power(x + beta1*beta2*x,2) + 2*beta1*beta2*hsdb,2)) ;
792 
793 
794  term[1] = (Power(alpha,4)*beta1*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*(1 + x)*
795  (Power(gqR,4)*Power(x + beta1*beta2*x + hs - beta1*beta2*hs,2) +
796  Power(gqL,4)*Power(x + beta1*beta2*x + (-1 + beta1*beta2)*hs,2))*Power(shs,2))/
797  (27648.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
798  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + xW,4)*
799  Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
800  4*beta1*beta2*Power(shs,2),2)) ;
801 
802  term[2] = (Power(alpha,4)*beta1*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*(1 + x)*
803  (Power(gqL,4)*Power(x + beta1*beta2*x + hs - beta1*beta2*hs,2) +
804  Power(gqR,4)*Power(x + beta1*beta2*x + (-1 + beta1*beta2)*hs,2))*Power(shs,2))/
805  (27648.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
806  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + xW,4)*
807  Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
808  4*beta1*beta2*Power(shs,2),2)) ;
809 
810  term[3] = (Power(alpha,4)*beta1*(1 + beta1*beta2)*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*
811  (1 + x)*Cos(2*(-Phi1 + Pi))*Power(shs,2)*
812  (Power(gqR,4)*Power(1 + hs,2)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs) +
813  Power(gqL,4)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*Power(shs,2)))/
814  (27648.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
815  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + xW,4)*
816  Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
817  4*beta1*beta2*Power(shs,2),2)) ;
818 
819  term[4] = -(Power(alpha,4)*beta1*(1 + beta1*beta2)*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*
820  (1 + x)*Cos(2*(-Phi1 + Pi))*Power(shs,2)*
821  (-(Power(gqL,4)*Power(1 + hs,2)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs)) -
822  Power(gqR,4)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*Power(shs,2)))/
823  (27648.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
824  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + xW,4)*
825  Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
826  4*beta1*beta2*Power(shs,2),2)) ;
827 
828  term[5] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*(gL - gR)*(gL + gR)*(Power(gL,2) + Power(gR,2))*
829  Power(M1,2)*Power(M2,2)*(1 + x)*Cos(Phi1)*shs*
830  (Power(gqR,4)*Power(1 + hs,2)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs)*
831  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
832  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs) -
833  Power(gqL,4)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*
834  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
835  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*Power(shs,2)
836  ))/(147456.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
837  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*(-1 + x)*Power(-1 + xW,4)*
838  Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
839  4*beta1*beta2*Power(shs,2),2)) ;
840 
841  term[6] = -(Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*(-Power(gL,2) + Power(gR,2))*
842  (Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(Phi1)*shs*
843  (-(Power(gqL,4)*Power(1 + hs,2)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs)*
844  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
845  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs)) +
846  Power(gqR,4)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*
847  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
848  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*Power(shs,2)
849  ))/(147456.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
850  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*(-1 + x)*Power(-1 + xW,4)*
851  Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
852  4*beta1*beta2*Power(shs,2),2)) ;
853 
854  term[7] = (Power(alpha,4)*beta1*Sqrt((1 - Power(beta2,2))/((-1 + Power(beta1,2))*(-1 + Power(beta2,2))))*
855  (-Power(gL,2) + Power(gR,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*
856  ((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) +
857  (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)))*Cos(Phi1)*hs*shs*
858  (-(Power(gqR,4)*Power(1 + hs,2)*
859  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
860  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs)) -
861  Power(gqL,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
862  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,2))
863  )/(73728.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
864  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*(-1 + Power(x,2))*
865  Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*
866  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)) ;
867 
868  term[8] = (Power(alpha,4)*beta1*Sqrt((1 - Power(beta2,2))/((-1 + Power(beta1,2))*(-1 + Power(beta2,2))))*
869  (gL - gR)*(gL + gR)*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*
870  ((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) +
871  (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)))*Cos(Phi1)*hs*shs*
872  (-(Power(gqL,4)*Power(1 + hs,2)*
873  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
874  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs)) -
875  Power(gqR,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
876  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,2))
877  )/(73728.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
878  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*(-1 + Power(x,2))*
879  Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*
880  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)) ;
881 
882  term[9] = (Power(alpha,4)*beta1*Power(1 + beta1*beta2,2)*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
883  Power(M2,2)*(1 + x)*Power(shs,2)*
884  (Power(gqR,4)*Power(1 + hs,4) + Power(gqL,4)*Power(shs,4)))/
885  (27648.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
886  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + xW,4)*
887  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
888  4*beta1*beta2*Power(shs,2),2)) ;
889 
890  term[10] = (Power(alpha,4)*beta1*Power(1 + beta1*beta2,2)*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
891  Power(M2,2)*(1 + x)*Power(shs,2)*
892  (Power(gqL,4)*Power(1 + hs,4) + Power(gqR,4)*Power(shs,4)))/
893  (27648.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
894  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + xW,4)*
895  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
896  4*beta1*beta2*Power(shs,2),2)) ;
897 
898  term[11] = -(Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*(1 + beta1*beta2)*(-Power(gL,2) + Power(gR,2))*
899  (Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(Phi1)*shs*
900  (-(Power(gqR,4)*Power(1 + hs,4)*
901  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
902  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs)) +
903  Power(gqL,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
904  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*Power(shs,4)
905  ))/(147456.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
906  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*(1 - x)*Power(-1 + xW,4)*
907  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
908  4*beta1*beta2*Power(shs,2),2)) ;
909 
910  term[12] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*(1 + beta1*beta2)*(gL - gR)*(gL + gR)*
911  (Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(Phi1)*shs*
912  (Power(gqL,4)*Power(1 + hs,4)*
913  (2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
914  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs) -
915  Power(gqR,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
916  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*Power(shs,4)
917  ))/(147456.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
918  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*(1 - x)*Power(-1 + xW,4)*
919  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
920  4*beta1*beta2*Power(shs,2),2)) ;
921 
922  term[13] = (Power(alpha,4)*beta1*(1 - Power(beta1,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*
923  (1 + x)*(Power(gqR,4)*Power(1 + hs,4)*
924  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
925  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs,2) +
926  Power(gqL,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
927  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs,2)*
928  Power(shs,4)))/
929  (221184.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
930  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + x,2)*
931  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
932  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)
933  ) ;
934 
935  term[14] = (Power(alpha,4)*beta1*(1 - Power(beta1,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
936  Power(M2,2)*(1 + x)*(Power(gqL,4)*Power(1 + hs,4)*
937  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
938  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs,2) +
939  Power(gqR,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
940  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs,2)*
941  Power(shs,4)))/
942  (221184.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
943  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*Power(-1 + x,2)*
944  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
945  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)
946  ) ;
947 
948  term[15] = (Power(alpha,4)*beta1*(1 - Power(beta2,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
949  Power(M2,2)*(Power(gqR,4)*Power(1 + hs,4)*
950  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
951  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs,2) +
952  Power(gqL,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
953  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs,2)*
954  Power(shs,4)))/
955  (221184.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
956  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*(1 + x)*
957  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
958  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)
959  ) ;
960 
961  term[16] = (Power(alpha,4)*beta1*(1 - Power(beta2,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
962  Power(M2,2)*(Power(gqL,4)*Power(1 + hs,4)*
963  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
964  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs,2) +
965  Power(gqR,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
966  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs,2)*
967  Power(shs,4)))/
968  (221184.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
969  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*(1 + x)*
970  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
971  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)) ;
972 
973  term[17] = (Power(alpha,4)*beta1*(Power(gqL,4) + Power(gqR,4))*Power(Power(gL,2) + Power(gR,2),2)*
974  Power(M1,2)*Power(M2,2)*(1 + x)*Power((beta1 + beta2 - beta1*x + beta2*x)*
975  Sqrt(beta1*beta2*(1 - Power(x,2))) + (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)),2)*
976  Power(shsdb,2))/
977  (27648.*(-1 + Power(beta1,2))*(-1 + Power(beta2,2))*
978  (Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
979  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,2)*s*
980  Power(-1 + Power(x,2),2)*Power(-1 + xW,4)*Power(xW,4)*
981  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)) ;
982 
983 
984  double returnVal = 0.;
985  //std::cout << "------" << std::endl;
986  for (int i = 0; i < nterms; i++){
987  //std::cout << "term[" << i << "] = " << term[i] << std::endl;
988  if (term[i] != term[i]) {
989  //std::cout << "isNaN" << std::endl;
990  term[i] = 0.;
991  }
992  returnVal += term[i];
993  }
994 
995  if (returnVal <= 0) returnVal = 1.e-40;
996 
997  //std::cout << "returnVal = " << returnVal << std::endl;
998 
999  return returnVal;
1000 
1001 }

◆ integratePartonicXS_Dh1Dh2DphDPh1_5()

Double_t RooqqZZ_JHU::integratePartonicXS_Dh1Dh2DphDPh1_5 ( double  m1_c,
double  m2_c,
double  h1_c,
double  h2_c,
double  phi_c,
double  hs_c,
double  Phi1_c,
double  mZZ_c,
bool  upType,
bool  flipAxis 
) const

Definition at line 1227 of file RooqqZZ_JHU.cc.

1228 {
1229  // define hs, h1, h2, phi1, phi2 for the NW angular conventions
1230  double s = mZZ_c*mZZ_c;
1231  double M1 = m1_c;
1232  double M2 = m2_c;
1233  double hs = hs_c;
1234  //double h1 = h1_c;
1235  //double h2 = h2_c;
1236  //double phi = phi_c; NOT USED
1237  double Phi1 = Phi1_c;
1238 
1239  if (flipAxis){
1240  hs *= -1.;
1241  Phi1 += TMath::Pi();
1242  //phi += 0;
1243  }
1244 
1245  // extra definitions needed
1246  double shs = Sqrt(1-hs*hs); // sin Theta
1247  //double sh1 = Sqrt(1-h1*h1); // sin theta1
1248  //double sh2 = Sqrt(1-h2*h2); // sin theta2
1249  //double hsdb = 1 - 2*shs*shs; // cos 2*Theta NOT USED!!
1250  double shsdb = 2*hs*shs; // sin 2*Theta
1251  //double h1db = 1 - 2*sh1*sh1; // cos 2*theta1 NOT USED!!
1252  //double h2db = 1 - 2*sh2*sh2; // cos 2*theta2 NOT USED!!
1253 
1254  double x = (M1*M1-M2*M2)/s;
1255  double beta1 = Sqrt(1. - (4.*M1*M1)/(s*(1+x)*(1+x)));
1256  double beta2 = Sqrt(1. - (4.*M2*M2)/(s*(1+x)*(1+x)));
1257  double MZ = 91.18; // mass of the Z
1258  double gamma = 2.475; // width of the Z
1259  double xW = 0.2312; // sin2thetaW
1260  double Pi = TMath::Pi();
1261  double alpha = 1./137; // EM constant
1262 
1263  double Tf3 = -1/2.; double Qf = -1.;
1264  double gL = 2.*(Tf3 - xW*Qf), gR = -2.*xW*Qf;
1265 
1266  double qTf3, qQf;
1267  if (upType){
1268  qTf3 = 1/2.; qQf = 2./3.;
1269  }
1270  else{
1271  qTf3 = -1/2.; qQf = -1./3.;
1272  }
1273  double gqL = 2.*(qTf3 - xW*qQf), gqR = -2.*xW*qQf;
1274 
1275 
1276  const int nterms = 9;
1277  double term[nterms];
1278 
1280  term[0] = (Power(alpha,4)*beta1*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*(1 + x)*
1281  (Power(gqR,4)*Power(x + beta1*beta2*x + hs - beta1*beta2*hs,2) +
1282  Power(gqL,4)*Power(x + beta1*beta2*x + (-1 + beta1*beta2)*hs,2))*Power(shs,2))/
1283  (13824.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1284  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + xW,4)*
1285  Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
1286  4*beta1*beta2*Power(shs,2),2)) ;
1287 
1288  term[1] = (Power(alpha,4)*beta1*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*(1 + x)*
1289  (Power(gqL,4)*Power(x + beta1*beta2*x + hs - beta1*beta2*hs,2) +
1290  Power(gqR,4)*Power(x + beta1*beta2*x + (-1 + beta1*beta2)*hs,2))*Power(shs,2))/
1291  (13824.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1292  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + xW,4)*
1293  Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
1294  4*beta1*beta2*Power(shs,2),2)) ;
1295 
1296  term[2] = (Power(alpha,4)*beta1*Power(1 + beta1*beta2,2)*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
1297  Power(M2,2)*(1 + x)*Power(shs,2)*
1298  (Power(gqR,4)*Power(1 + hs,4) + Power(gqL,4)*Power(shs,4)))/
1299  (13824.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1300  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + xW,4)*
1301  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
1302  4*beta1*beta2*Power(shs,2),2)) ;
1303 
1304  term[3] = (Power(alpha,4)*beta1*Power(1 + beta1*beta2,2)*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
1305  Power(M2,2)*(1 + x)*Power(shs,2)*
1306  (Power(gqL,4)*Power(1 + hs,4) + Power(gqR,4)*Power(shs,4)))/
1307  (13824.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1308  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + xW,4)*
1309  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
1310  4*beta1*beta2*Power(shs,2),2));
1311 
1312  term[4] = (Power(alpha,4)*beta1*(1 - Power(beta1,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*
1313  (1 + x)*(Power(gqR,4)*Power(1 + hs,4)*
1314  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1315  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs,2) +
1316  Power(gqL,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1317  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs,2)*
1318  Power(shs,4)))/
1319  (110592.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1320  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + x,2)*
1321  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
1322  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)
1323  ) ;
1324 
1325  term[5] = (Power(alpha,4)*beta1*(1 - Power(beta1,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
1326  Power(M2,2)*(1 + x)*(Power(gqL,4)*Power(1 + hs,4)*
1327  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1328  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs,2) +
1329  Power(gqR,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1330  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs,2)*
1331  Power(shs,4)))/
1332  (110592.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1333  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + x,2)*
1334  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
1335  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)
1336  ) ;
1337 
1338  term[6] = (Power(alpha,4)*beta1*(1 - Power(beta2,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
1339  Power(M2,2)*(Power(gqR,4)*Power(1 + hs,4)*
1340  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1341  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs,2) +
1342  Power(gqL,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1343  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs,2)*
1344  Power(shs,4)))/
1345  (110592.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1346  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*(1 + x)*Power(-1 + xW,4)*
1347  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
1348  4*beta1*beta2*Power(shs,2),2)) ;
1349 
1350  term[7] = (Power(alpha,4)*beta1*(1 - Power(beta2,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*
1351  (Power(gqL,4)*Power(1 + hs,4)*
1352  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1353  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs,2) +
1354  Power(gqR,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
1355  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs,2)*
1356  Power(shs,4)))/
1357  (110592.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1358  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*(1 + x)*Power(-1 + xW,4)*
1359  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
1360  4*beta1*beta2*Power(shs,2),2)) ;
1361 
1362  term[8] = (Power(alpha,4)*beta1*(Power(gqL,4) + Power(gqR,4))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
1363  Power(M2,2)*(1 + x)*Power((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) +
1364  (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)),2)*Power(shsdb,2))/
1365  (13824.*(-1 + Power(beta1,2))*(-1 + Power(beta2,2))*
1366  (Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
1367  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + Power(x,2),2)*
1368  Power(-1 + xW,4)*Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
1369  4*beta1*beta2*Power(shs,2),2));
1370 
1371  double returnVal = 0.;
1372  for (int i = 0; i < nterms; i++){
1373  //std::cout << "term[" << i << "] = " << term[i] << std::endl;
1374  if (term[i] != term[i]) {
1375  //std::cout << "isNaN" << std::endl;
1376  term[i] = 0.;
1377  }
1378  returnVal += term[i];
1379  }
1380 
1381  if (returnVal <= 0) returnVal = 1.e-40;
1382  return returnVal;
1383 
1384 }

◆ integratePartonicXS_Dh1DphDPh1_2()

Double_t RooqqZZ_JHU::integratePartonicXS_Dh1DphDPh1_2 ( double  m1_c,
double  m2_c,
double  h1_c,
double  h2_c,
double  phi_c,
double  hs_c,
double  Phi1_c,
double  mZZ_c,
bool  upType,
bool  flipAxis 
) const

Definition at line 545 of file RooqqZZ_JHU.cc.

546 {
547  // define hs, h1, h2, phi1, phi2 for the NW angular conventions
548  double s = mZZ_c*mZZ_c;
549  double M1 = m1_c;
550  double M2 = m2_c;
551  double hs = hs_c;
552  //double h1 = h1_c;
553  double h2 = h2_c;
554  //double phi = phi_c; NOT USED !!
555  double Phi1 = Phi1_c;
556 
557  if (flipAxis){
558  hs *= -1.;
559  Phi1 += TMath::Pi();
560  //phi += 0;
561  }
562 
563  // extra definitions needed
564  double shs = Sqrt(1-hs*hs); // sin Theta
565  //double sh1 = Sqrt(1-h1*h1); // sin theta1
566  double sh2 = Sqrt(1-h2*h2); // sin theta2
567  //double hsdb = 1 - 2*shs*shs; // cos 2*Theta NOT USED
568  double shsdb = 2*hs*shs; // sin 2*Theta
569  //double h1db = 1 - 2*sh1*sh1; // cos 2*theta1 NOT USED
570  double h2db = 1 - 2*sh2*sh2; // cos 2*theta2
571 
572  double x = (M1*M1-M2*M2)/s;
573  double beta1 = Sqrt(1. - (4.*M1*M1)/(s*(1+x)*(1+x)));
574  double beta2 = Sqrt(1. - (4.*M2*M2)/(s*(1+x)*(1+x)));
575  double MZ = 91.18; // mass of the Z
576  double gamma = 2.475; // width of the Z
577  double xW = 0.2312; // sin2thetaW
578  double Pi = TMath::Pi();
579  double alpha = 1./137; // EM constant
580 
581  double Tf3 = -1/2.; double Qf = -1.;
582  double gL = 2.*(Tf3 - xW*Qf), gR = -2.*xW*Qf;
583 
584  double qTf3, qQf;
585  if (upType){
586  qTf3 = 1/2.; qQf = 2./3.;
587  }
588  else{
589  qTf3 = -1/2.; qQf = -1./3.;
590  }
591  double gqL = 2.*(qTf3 - xW*qQf), gqR = -2.*xW*qQf;
592 
593  const int nterms = 9;
594  double term[nterms];
595 
596  term[0] = (Power(alpha,4)*beta1*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*
597  (Power(gqL,4)*Power(x + beta1*beta2*x + hs - beta1*beta2*hs,2) +
598  Power(gqR,4)*Power(x + beta1*beta2*x + (-1 + beta1*beta2)*hs,2))*
599  (4*(gL - gR)*(gL + gR)*h2 + (Power(gL,2) + Power(gR,2))*(3 + h2db))*
600  Power(shs,2))/
601  (73728.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
602  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + xW,4)*
603  Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
604  4*beta1*beta2*Power(shs,2),2)) ;
605 
606  term[1] = (Power(alpha,4)*beta1*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*
607  (Power(gqR,4)*Power(x + beta1*beta2*x + hs - beta1*beta2*hs,2) +
608  Power(gqL,4)*Power(x + beta1*beta2*x + (-1 + beta1*beta2)*hs,2))*
609  (4*(-Power(gL,2) + Power(gR,2))*h2 + (Power(gL,2) + Power(gR,2))*(3 + h2db))*
610  Power(shs,2))/
611  (73728.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
612  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + xW,4)*
613  Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
614  4*beta1*beta2*Power(shs,2),2)) ;
615 
616  term[2] = (Power(alpha,4)*beta1*Power(1 + beta1*beta2,2)*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*
617  (1 + x)*(4*(gL - gR)*(gL + gR)*h2 + (Power(gL,2) + Power(gR,2))*(3 + h2db))*
618  Power(shs,2)*(Power(gqR,4)*Power(1 + hs,4) + Power(gqL,4)*Power(shs,4)))/
619  (73728.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
620  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + xW,4)*
621  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
622  4*beta1*beta2*Power(shs,2),2)) ;
623 
624  term[3] = (Power(alpha,4)*beta1*Power(1 + beta1*beta2,2)*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*
625  (1 + x)*(4*(-Power(gL,2) + Power(gR,2))*h2 +
626  (Power(gL,2) + Power(gR,2))*(3 + h2db))*Power(shs,2)*
627  (Power(gqL,4)*Power(1 + hs,4) + Power(gqR,4)*Power(shs,4)))/
628  (73728.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
629  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + xW,4)*
630  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
631  4*beta1*beta2*Power(shs,2),2)) ;
632 
633  term[4] = (Power(alpha,4)*beta1*(1 - Power(beta1,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*
634  (1 + x)*(4*(gL - gR)*(gL + gR)*h2 + (Power(gL,2) + Power(gR,2))*(3 + h2db))*
635  (Power(gqR,4)*Power(1 + hs,4)*
636  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
637  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs,2) +
638  Power(gqL,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
639  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs,2)*
640  Power(shs,4)))/
641  (589824.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
642  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + x,2)*
643  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
644  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)) ;
645 
646  term[5] = (Power(alpha,4)*beta1*(1 - Power(beta1,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*
647  (1 + x)*(4*(-Power(gL,2) + Power(gR,2))*h2 +
648  (Power(gL,2) + Power(gR,2))*(3 + h2db))*
649  (Power(gqL,4)*Power(1 + hs,4)*
650  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
651  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs,2) +
652  Power(gqR,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
653  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs,2)*
654  Power(shs,4)))/
655  (589824.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
656  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + x,2)*
657  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
658  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)) ;
659 
660  term[6] = (Power(alpha,4)*beta1*(1 - Power(beta2,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
661  Power(M2,2)*(Power(gqR,4)*Power(1 + hs,4)*
662  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
663  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs,2) +
664  Power(gqL,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
665  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs,2)*
666  Power(shs,4))*Power(sh2,2))/
667  (147456.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
668  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*(1 + x)*Power(-1 + xW,4)*
669  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
670  4*beta1*beta2*Power(shs,2),2)) ;
671 
672  term[7] = (Power(alpha,4)*beta1*(1 - Power(beta2,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*
673  (Power(gqL,4)*Power(1 + hs,4)*
674  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
675  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs,2) +
676  Power(gqR,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
677  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs,2)*
678  Power(shs,4))*Power(sh2,2))/
679  (147456.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
680  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*(1 + x)*Power(-1 + xW,4)*
681  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
682  4*beta1*beta2*Power(shs,2),2)) ;
683 
684  term[8] = (Power(alpha,4)*beta1*(Power(gqL,4) + Power(gqR,4))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
685  Power(M2,2)*(1 + x)*Power((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) +
686  (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)),2)*Power(shsdb,2)*
687  Power(sh2,2))/
688  (18432.*(-1 + Power(beta1,2))*(-1 + Power(beta2,2))*
689  (Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
690  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + Power(x,2),2)*
691  Power(-1 + xW,4)*Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
692  4*beta1*beta2*Power(shs,2),2));
693 
694  double returnVal = 0.;
695  for (int i = 0; i < nterms; i++){
696  //std::cout << "term[" << i << "] = " << term[i] << std::endl;
697  if (term[i] != term[i]) {
698  //std::cout << "isNaN" << std::endl;
699  term[i] = 0.;
700  }
701  returnVal += term[i];
702  }
703 
704  if (returnVal <= 0) returnVal = 1.e-40;
705  return returnVal;
706 
707 }

◆ integratePartonicXS_Dh2DphDPh1_1()

Double_t RooqqZZ_JHU::integratePartonicXS_Dh2DphDPh1_1 ( double  m1_c,
double  m2_c,
double  h1_c,
double  h2_c,
double  phi_c,
double  hs_c,
double  Phi1_c,
double  mZZ_c,
bool  upType,
bool  flipAxis 
) const

Definition at line 378 of file RooqqZZ_JHU.cc.

379 {
380 
381  // define hs, h1, h2, phi1, phi2 for the NW angular conventions
382  double s = mZZ_c*mZZ_c;
383  double M1 = m1_c;
384  double M2 = m2_c;
385  double hs = hs_c;
386  double h1 = h1_c;
387  //double h2 = h2_c;
388  //double phi = phi_c; NOT USED!!
389  double Phi1 = Phi1_c;
390 
391  if (flipAxis){
392  hs *= -1.;
393  Phi1 += TMath::Pi();
394  //phi += 0;
395  }
396 
397  // extra definitions needed
398  double shs = Sqrt(1-hs*hs); // sin Theta
399  double sh1 = Sqrt(1-h1*h1); // sin theta1
400  //double sh2 = Sqrt(1-h2*h2); // sin theta2
401  //double hsdb = 1 - 2*shs*shs; // cos 2*Theta NOT USED!!
402  double shsdb = 2*hs*shs; // sin 2*Theta
403  double h1db = 1 - 2*sh1*sh1; // cos 2*theta1
404  //double h2db = 1 - 2*sh2*sh2; // cos 2*theta2 NOT USED!!
405 
406  double x = (M1*M1-M2*M2)/s;
407  double beta1 = Sqrt(1. - (4.*M1*M1)/(s*(1+x)*(1+x)));
408  double beta2 = Sqrt(1. - (4.*M2*M2)/(s*(1+x)*(1+x)));
409  double MZ = 91.18; // mass of the Z
410  double gamma = 2.475; // width of the Z
411  double xW = 0.2312; // sin2thetaW
412  double Pi = TMath::Pi();
413  double alpha = 1./137; // EM constant
414 
415  double Tf3 = -1/2.; double Qf = -1.;
416  double gL = 2.*(Tf3 - xW*Qf), gR = -2.*xW*Qf;
417 
418  double qTf3, qQf;
419  if (upType){
420  qTf3 = 1/2.; qQf = 2./3.;
421  }
422  else{
423  qTf3 = -1/2.; qQf = -1./3.;
424  }
425  double gqL = 2.*(qTf3 - xW*qQf), gqR = -2.*xW*qQf;
426 
427  // ----
428  const int nterms = 9;
429  double term[nterms];
430 
431 
432  term[0] = (Power(alpha,4)*beta1*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*
433  (Power(gqL,4)*Power(x + beta1*beta2*x + hs - beta1*beta2*hs,2) +
434  Power(gqR,4)*Power(x + beta1*beta2*x + (-1 + beta1*beta2)*hs,2))*
435  (4*(gL - gR)*(gL + gR)*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*
436  Power(shs,2))/
437  (73728.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
438  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + xW,4)*
439  Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
440  4*beta1*beta2*Power(shs,2),2)) ;
441 
442  term[1] = (Power(alpha,4)*beta1*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*
443  (Power(gqR,4)*Power(x + beta1*beta2*x + hs - beta1*beta2*hs,2) +
444  Power(gqL,4)*Power(x + beta1*beta2*x + (-1 + beta1*beta2)*hs,2))*
445  (4*(-Power(gL,2) + Power(gR,2))*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*
446  Power(shs,2))/
447  (73728.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
448  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + xW,4)*
449  Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
450  4*beta1*beta2*Power(shs,2),2)) ;
451 
452  term[2] = (Power(alpha,4)*beta1*Power(1 + beta1*beta2,2)*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*
453  (1 + x)*(4*(-Power(gL,2) + Power(gR,2))*h1 +
454  (Power(gL,2) + Power(gR,2))*(3 + h1db))*Power(shs,2)*
455  (Power(gqR,4)*Power(1 + hs,4) + Power(gqL,4)*Power(shs,4)))/
456  (73728.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
457  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + xW,4)*
458  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
459  4*beta1*beta2*Power(shs,2),2)) ;
460 
461  term[3] = (Power(alpha,4)*beta1*Power(1 + beta1*beta2,2)*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*
462  (1 + x)*(4*(gL - gR)*(gL + gR)*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*
463  Power(shs,2)*(Power(gqL,4)*Power(1 + hs,4) + Power(gqR,4)*Power(shs,4)))/
464  (73728.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
465  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + xW,4)*
466  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
467  4*beta1*beta2*Power(shs,2),2)) ;
468 
469  term[4] = (Power(alpha,4)*beta1*(1 - Power(beta2,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*
470  (4*(-Power(gL,2) + Power(gR,2))*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*
471  (Power(gqR,4)*Power(1 + hs,4)*
472  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
473  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs,2) +
474  Power(gqL,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
475  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs,2)*
476  Power(shs,4)))/
477  (589824.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
478  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*(1 + x)*Power(-1 + xW,4)*
479  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
480  4*beta1*beta2*Power(shs,2),2)) ;
481 
482  term[5] = (Power(alpha,4)*beta1*(1 - Power(beta2,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*
483  (4*(gL - gR)*(gL + gR)*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*
484  (Power(gqL,4)*Power(1 + hs,4)*
485  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
486  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs,2) +
487  Power(gqR,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
488  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs,2)*
489  Power(shs,4)))/
490  (589824.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
491  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*(1 + x)*Power(-1 + xW,4)*
492  Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
493  4*beta1*beta2*Power(shs,2),2));
494 
495  term[6] = (Power(alpha,4)*beta1*(1 - Power(beta1,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*
496  (1 + x)*(Power(gqR,4)*Power(1 + hs,4)*
497  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
498  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs,2) +
499  Power(gqL,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
500  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs,2)*
501  Power(shs,4))*Power(sh1,2))/
502  (147456.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
503  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + x,2)*
504  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
505  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)) ;
506 
507  term[7] = (Power(alpha,4)*beta1*(1 - Power(beta1,2))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*
508  Power(M2,2)*(1 + x)*(Power(gqL,4)*Power(1 + hs,4)*
509  Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
510  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs,2) +
511  Power(gqR,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x +
512  (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs,2)*
513  Power(shs,4))*Power(sh1,2))/
514  (147456.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
515  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + x,2)*
516  Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*
517  Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2)) ;
518 
519  term[8] = (Power(alpha,4)*beta1*(Power(gqL,4) + Power(gqR,4))*Power(Power(gL,2) + Power(gR,2),2)*
520  Power(M1,2)*Power(M2,2)*(1 + x)*Power((beta1 + beta2 - beta1*x + beta2*x)*
521  Sqrt(beta1*beta2*(1 - Power(x,2))) + (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)),2)*
522  Power(shsdb,2)*Power(sh1,2))/
523  (18432.*(-1 + Power(beta1,2))*(-1 + Power(beta2,2))*
524  (Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*
525  (Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Pi*s*Power(-1 + Power(x,2),2)*
526  Power(-1 + xW,4)*Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) +
527  4*beta1*beta2*Power(shs,2),2));
528 
529 
530  double returnVal = 0.;
531  for (int i = 0; i < nterms; i++){
532  //std::cout << "term[" << i << "] = " << term[i] << std::endl;
533  if (term[i] != term[i]) {
534  //std::cout << "isNaN" << std::endl;
535  term[i] = 0.;
536  }
537  returnVal += term[i];
538  }
539 
540  if (returnVal <= 0) returnVal = 1.e-40;
541  return returnVal;
542 
543 }

◆ partonicXS()

Double_t RooqqZZ_JHU::partonicXS ( double  m1_c,
double  m2_c,
double  h1_c,
double  h2_c,
double  phi_c,
double  hs_c,
double  Phi1_c,
double  mZZ_c,
bool  upType,
bool  flipAxis 
) const

Definition at line 217 of file RooqqZZ_JHU.cc.

218 {
219 
220  // define hs, h1, h2, phi1, phi2 for the NW angular conventions
221  double s = mZZ_c*mZZ_c;
222  double M1 = m1_c;
223  double M2 = m2_c;
224  double hs = hs_c;
225  double h1 = h1_c;
226  double h2 = h2_c;
227  double phi = phi_c;
228  double Phi1 = Phi1_c;
229 
230  if (flipAxis){
231  hs *= -1.;
232  Phi1 += TMath::Pi();
233  //phi += 0;
234  }
235 
236  // extra definitions needed
237  double shs = Sqrt(1-hs*hs); // sin Theta
238  double sh1 = Sqrt(1-h1*h1); // sin theta1
239  double sh2 = Sqrt(1-h2*h2); // sin theta2
240  double hsdb = 1 - 2*shs*shs; // cos 2*Theta
241  double shsdb = 2*hs*shs; // sin 2*Theta
242  double h1db = 1 - 2*sh1*sh1; // cos 2*theta1
243  double h2db = 1 - 2*sh2*sh2; // cos 2*theta2
244 
245  double x = (M1*M1-M2*M2)/s;
246  double beta1 = Sqrt(1. - (4.*M1*M1)/(s*(1+x)*(1+x)));
247  double beta2 = Sqrt(1. - (4.*M2*M2)/(s*(1+x)*(1+x)));
248  double MZ = 91.18; // mass of the Z
249  double gamma = 2.475; // width of the Z
250  double xW = 0.2312; // sin2thetaW
251  double Pi = TMath::Pi();
252  double alpha = 1./137; // EM constant
253 
254  double Tf3 = -1/2.; double Qf = -1.;
255  double gL = 2.*(Tf3 - xW*Qf), gR = -2.*xW*Qf;
256 
257  double qTf3, qQf;
258  if (upType){
259  qTf3 = 1/2.; qQf = 2./3.;
260  }
261  else{
262  qTf3 = -1/2.; qQf = -1./3.;
263  }
264  double gqL = 2.*(qTf3 - xW*qQf), gqR = -2.*xW*qQf;
265 
266  // ----
267  const int nterms = 45;
268  double term[nterms];
269 
270  term[0] = (Power(alpha,4)*beta1*Power(M1,2)*Power(M2,2)*(1 + x)*(Power(gqL,4)*Power(x + beta1*beta2*x + hs - beta1*beta2*hs,2) + Power(gqR,4)*Power(x + beta1*beta2*x + (-1 + beta1*beta2)*hs,2))*(4*(gL - gR)*(gL + gR)*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*(4*(gL - gR)*(gL + gR)*h2 + (Power(gL,2) + Power(gR,2))*(3 + h2db))*Power(shs,2))/(1.572864e6*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
271 
272  term[1] = (Power(alpha,4)*beta1*Power(M1,2)*Power(M2,2)*(1 + x)*(Power(gqR,4)*Power(x + beta1*beta2*x + hs - beta1*beta2*hs,2) + Power(gqL,4)*Power(x + beta1*beta2*x + (-1 + beta1*beta2)*hs,2))*(4*(-Power(gL,2) + Power(gR,2))*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*(4*(-Power(gL,2) + Power(gR,2))*h2 + (Power(gL,2) + Power(gR,2))*(3 + h2db))*Power(shs,2))/(1.572864e6*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
273 
274  term[2] = (Power(alpha,4)*beta1*Power(1 + beta1*beta2,2)*Power(M1,2)*Power(M2,2)*(1 + x)*(4*(-Power(gL,2) + Power(gR,2))*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*(4*(gL - gR)*(gL + gR)*h2 + (Power(gL,2) + Power(gR,2))*(3 + h2db))*Power(shs,2)*(Power(gqR,4)*Power(1 + hs,4) + Power(gqL,4)*Power(shs,4)))/(1.572864e6*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
275 
276  term[3] = (Power(alpha,4)*beta1*Power(1 + beta1*beta2,2)*Power(M1,2)*Power(M2,2)*(1 + x)*(4*(gL - gR)*(gL + gR)*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*(4*(-Power(gL,2) + Power(gR,2))*h2 + (Power(gL,2) + Power(gR,2))*(3 + h2db))*Power(shs,2)*(Power(gqL,4)*Power(1 + hs,4) + Power(gqR,4)*Power(shs,4)))/(1.572864e6*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
277 
278  term[4] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(Phi1)*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*(4*(gL - gR)*(gL + gR)*h2 + (Power(gL,2) + Power(gR,2))*(3 + h2db))*shs*(Power(gqR,4)*Power(1 + hs,2)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs) - Power(gqL,4)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*Power(shs,2))*sh1)/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(-1 + x)*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
279 
280  term[5] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(Phi1)*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*(4*(gL - gR)*(gL + gR)*h2 - (Power(gL,2) + Power(gR,2))*(3 + h2db))*shs*(-(Power(gqL,4)*Power(1 + hs,2)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs)) + Power(gqR,4)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*Power(shs,2))*sh1)/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(-1 + x)*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
281 
282  term[6] = -(Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*(1 + beta1*beta2)*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(Phi1)*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*(4*(gL - gR)*(gL + gR)*h2 + (Power(gL,2) + Power(gR,2))*(3 + h2db))*shs*(-(Power(gqR,4)*Power(1 + hs,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs)) + Power(gqL,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*Power(shs,4))*sh1)/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(1 - x)*Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
283 
284  term[7] = -(Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*(1 + beta1*beta2)*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(Phi1)*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*(4*(gL - gR)*(gL + gR)*h2 - (Power(gL,2) + Power(gR,2))*(3 + h2db))*shs*(Power(gqL,4)*Power(1 + hs,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs) - Power(gqR,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*Power(shs,4))*sh1)/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(1 - x)*Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
285 
286  term[8] = (Power(alpha,4)*beta1*(1 + beta1*beta2)*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(2*(-Phi1 + Pi))*(4*(gL - gR)*(gL + gR)*h2 + (Power(gL,2) + Power(gR,2))*(3 + h2db))*Power(shs,2)*(Power(gqR,4)*Power(1 + hs,2)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs) + Power(gqL,4)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*Power(shs,2))*Power(sh1,2))/(393216.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
287 
288  term[9] = (Power(alpha,4)*beta1*(1 + beta1*beta2)*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(2*(-Phi1 + Pi))*(4*(gL - gR)*(gL + gR)*h2 - (Power(gL,2) + Power(gR,2))*(3 + h2db))*Power(shs,2)*(-(Power(gqL,4)*Power(1 + hs,2)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs)) - Power(gqR,4)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*Power(shs,2))*Power(sh1,2))/(393216.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
289 
290  term[10] = (Power(alpha,4)*beta1*(1 - Power(beta1,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*(4*(gL - gR)*(gL + gR)*h2 + (Power(gL,2) + Power(gR,2))*(3 + h2db))*(Power(gqR,4)*Power(1 + hs,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs,2) + Power(gqL,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs,2)*Power(shs,4))*Power(sh1,2))/(3.145728e6*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + x,2)*Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
291 
292  term[11] = (Power(alpha,4)*beta1*(1 - Power(beta1,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*(4*(-Power(gL,2) + Power(gR,2))*h2 + (Power(gL,2) + Power(gR,2))*(3 + h2db))*(Power(gqL,4)*Power(1 + hs,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs,2) + Power(gqR,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs,2)*Power(shs,4))*Power(sh1,2))/(3.145728e6*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + x,2)*Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
293 
294  term[12] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta2,2))*Power(M1,2)*Power(M2,2)*Cos(phi + Phi1)*(4*(gL - gR)*(gL + gR)*h1 - (Power(gL,2) + Power(gR,2))*(3 + h1db))*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*shs*(Power(gqR,4)*Power(1 + hs,2)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs) - Power(gqL,4)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,2))*sh2)/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
295 
296  term[13] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta2,2))*Power(M1,2)*Power(M2,2)*Cos(phi + Phi1)*(4*(gL - gR)*(gL + gR)*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*shs*(-(Power(gqL,4)*Power(1 + hs,2)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs)) + Power(gqR,4)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,2))*sh2)/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
297 
298  term[14] = (Power(alpha,4)*beta1*(1 + beta1*beta2)*Sqrt(1 - Power(beta2,2))*Power(M1,2)*Power(M2,2)*Cos(phi + Phi1)*(4*(gL - gR)*(gL + gR)*h1 - (Power(gL,2) + Power(gR,2))*(3 + h1db))*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*shs*(Power(gqR,4)*Power(1 + hs,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs) - Power(gqL,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,4))*sh2)/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
299 
300  term[15] = (Power(alpha,4)*beta1*(1 + beta1*beta2)*Sqrt(1 - Power(beta2,2))*Power(M1,2)*Power(M2,2)*Cos(phi + Phi1)*(4*(gL - gR)*(gL + gR)*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*shs*(-(Power(gqL,4)*Power(1 + hs,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs)) + Power(gqR,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,4))*sh2)/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
301 
302  term[16] = -(Power(alpha,4)*beta1*Power(M1,2)*Power(M2,2)*(1 + x)*((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) + (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)))*Cos(phi)*hs*((1 + beta1*beta2)*(Power(gqL,4) - Power(gqR,4))*x - (-1 + beta1*beta2)*(Power(gqL,4) + Power(gqR,4))*hs)*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*Power(shs,2)*sh1*sh2)/(49152.*Sqrt((-1 + Power(beta1,2))*(-1 + Power(beta2,2)))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(1 - Power(x,2))*Power(-1 + xW,4)*Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
303 
304  term[17] = -(Power(alpha,4)*beta1*Power(M1,2)*Power(M2,2)*(1 + x)*((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) + (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)))*Cos(phi)*hs*((1 + beta1*beta2)*(-Power(gqL,4) + Power(gqR,4))*x - (-1 + beta1*beta2)*(Power(gqL,4) + Power(gqR,4))*hs)*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*Power(shs,2)*sh1*sh2)/(49152.*Sqrt((-1 + Power(beta1,2))*(-1 + Power(beta2,2)))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(1 - Power(x,2))*Power(-1 + xW,4)*Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
305 
306  term[18] = -(Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*Sqrt(1 - Power(beta2,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(phi + 2*Phi1)*(Power(gqL,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs) + Power(gqR,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs))*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*Power(shs,2)*sh1*sh2)/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(1 - Power(x,2))*Power(-1 + xW,4)*Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
307 
308  term[19] = -(Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*Sqrt(1 - Power(beta2,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(phi + 2*Phi1)*(Power(gqR,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs) + Power(gqL,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs))*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*Power(shs,2)*sh1*sh2)/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(1 - Power(x,2))*Power(-1 + xW,4)*Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
309 
310  term[20] = (Power(alpha,4)*beta1*(1 + beta1*beta2)*Power(M1,2)*Power(M2,2)*(1 + x)*((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) + (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)))*Cos(phi + 2*Phi1)*hs*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*Power(shs,2)*(Power(gqR,4)*Power(1 + hs,2) - Power(gqL,4)*Power(shs,2))*sh1*sh2)/(49152.*Sqrt((-1 + Power(beta1,2))*(-1 + Power(beta2,2)))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(-1 + Power(x,2))*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
311 
312  term[21] = (Power(alpha,4)*beta1*(1 + beta1*beta2)*Power(M1,2)*Power(M2,2)*(1 + x)*((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) + (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)))*Cos(phi + 2*Phi1)*hs*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*Power(shs,2)*(Power(gqL,4)*Power(1 + hs,2) - Power(gqR,4)*Power(shs,2))*sh1*sh2)/(49152.*Sqrt((-1 + Power(beta1,2))*(-1 + Power(beta2,2)))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(-1 + Power(x,2))*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
313 
314  term[22] = -(Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*Sqrt(1 - Power(beta2,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(phi)*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*(Power(gqR,4)*Power(1 + hs,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs) + Power(gqL,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,4))*sh1*sh2)/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(1 - Power(x,2))*Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
315 
316  term[23] = -(Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*Sqrt(1 - Power(beta2,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(phi)*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*(Power(gqL,4)*Power(1 + hs,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs) + Power(gqR,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,4))*sh1*sh2)/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(1 - Power(x,2))*Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
317 
318  term[24] = (Power(alpha,4)*beta1*(1 + beta1*beta2)*Sqrt(1 - Power(beta2,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*Cos(phi + Phi1 - 2*(-Phi1 + Pi))*((-Power(gqL,4) + Power(gqR,4))*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2)) + 4*(Power(gqL,4) + Power(gqR,4))*(1 + x)*hs)*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*Power(shs,3)*Power(sh1,2)*sh2)/(393216.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*Power(-1 - Power(beta1,2)*Power(beta2,2) + Power(x + beta1*beta2*x,2) + 2*beta1*beta2*hsdb,2));
319 
320  term[25] = (Power(alpha,4)*beta1*(1 + beta1*beta2)*Sqrt(1 - Power(beta2,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*Cos(phi + Phi1 - 2*(-Phi1 + Pi))*((Power(gqL,4) - Power(gqR,4))*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2)) + 4*(Power(gqL,4) + Power(gqR,4))*(1 + x)*hs)*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*Power(shs,3)*Power(sh1,2)*sh2)/(393216.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*Power(-1 - Power(beta1,2)*Power(beta2,2) + Power(x + beta1*beta2*x,2) + 2*beta1*beta2*hsdb,2));
321 
322  term[26] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) + (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)))*Cos(phi + Phi1)*hs*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*shs*(-(Power(gqR,4)*Power(1 + hs,2)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs)) - Power(gqL,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*Power(shs,2))*Power(sh1,2)*sh2)/(98304.*Sqrt((-1 + Power(beta1,2))*(-1 + Power(beta2,2)))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(-1 + x)*(-1 + Power(x,2))*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
323 
324  term[27] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) + (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)))*Cos(phi + Phi1)*hs*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*shs*(-(Power(gqL,4)*Power(1 + hs,2)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs)) - Power(gqR,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*Power(shs,2))*Power(sh1,2)*sh2)/(98304.*Sqrt((-1 + Power(beta1,2))*(-1 + Power(beta2,2)))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(-1 + x)*(-1 + Power(x,2))*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
325 
326  term[28] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta2,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*Cos(phi + Phi1 + 2*(-Phi1 + Pi))*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*shs*(Power(gqR,4)*Power(1 + hs,2)*(-((1 + beta1*beta2)*x) + (1 - beta1*beta2)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs) + Power(gqL,4)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,2))*Power(sh1,2)*sh2)/(393216.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
327 
328  term[29] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta2,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*Cos(phi + Phi1 + 2*(-Phi1 + Pi))*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h2)*shs*(Power(gqL,4)*Power(1 + hs,2)*(-((1 + beta1*beta2)*x) + (1 - beta1*beta2)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs) + Power(gqR,4)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,2))*Power(sh1,2)*sh2)/(393216.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
329 
330  term[30] = (Power(alpha,4)*beta1*(1 + beta1*beta2)*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(2*(phi + Phi1))*(4*(gL - gR)*(gL + gR)*h1 - (Power(gL,2) + Power(gR,2))*(3 + h1db))*Power(shs,2)*(Power(gqR,4)*Power(1 + hs,2)*(x + beta1*beta2*x + hs - beta1*beta2*hs) + Power(gqL,4)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs)*Power(shs,2))*Power(sh2,2))/(393216.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
331 
332  term[31] = (Power(alpha,4)*beta1*(1 + beta1*beta2)*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(2*(phi + Phi1))*(4*(gL - gR)*(gL + gR)*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*Power(shs,2)*(-(Power(gqL,4)*Power(1 + hs,2)*(x + beta1*beta2*x + hs - beta1*beta2*hs)) - Power(gqR,4)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs)*Power(shs,2))*Power(sh2,2))/(393216.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
333 
334  term[32] = (Power(alpha,4)*beta1*(1 - Power(beta2,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(4*(-Power(gL,2) + Power(gR,2))*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*(Power(gqR,4)*Power(1 + hs,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs,2) + Power(gqL,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs,2)*Power(shs,4))*Power(sh2,2))/(3.145728e6*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(1 + x)*Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
335 
336  term[33] = (Power(alpha,4)*beta1*(1 - Power(beta2,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(4*(gL - gR)*(gL + gR)*h1 + (Power(gL,2) + Power(gR,2))*(3 + h1db))*(Power(gqL,4)*Power(1 + hs,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs,2) + Power(gqR,4)*Power(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs,2)*Power(shs,4))*Power(sh2,2))/(3.145728e6*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(1 + x)*Power(-1 + xW,4)*Power(xW,4)*Power(1 + hs,2)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
337 
338  term[34] = -(Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*(1 + beta1*beta2)*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(Phi1 + 2*(phi + Phi1))*((-Power(gqL,4) + Power(gqR,4))*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2)) + 4*(Power(gqL,4) + Power(gqR,4))*(-1 + x)*hs)*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*Power(shs,3)*sh1*Power(sh2,2))/(393216.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(-1 + x)*Power(-1 + xW,4)*Power(xW,4)*Power(-1 - Power(beta1,2)*Power(beta2,2) + Power(x + beta1*beta2*x,2) + 2*beta1*beta2*hsdb,2));
339 
340  term[35] = -(Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*(1 + beta1*beta2)*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(Phi1 + 2*(phi + Phi1))*((Power(gqL,4) - Power(gqR,4))*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2)) + 4*(Power(gqL,4) + Power(gqR,4))*(-1 + x)*hs)*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*Power(shs,3)*sh1*Power(sh2,2))/(393216.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(-1 + x)*Power(-1 + xW,4)*Power(xW,4)*Power(-1 - Power(beta1,2)*Power(beta2,2) + Power(x + beta1*beta2*x,2) + 2*beta1*beta2*hsdb,2));
341 
342  term[36] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta2,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) + (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)))*Cos(Phi1)*hs*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*shs*(-(Power(gqR,4)*Power(1 + hs,2)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs)) - Power(gqL,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,2))*sh1*Power(sh2,2))/(98304.*Sqrt((-1 + Power(beta1,2))*(-1 + Power(beta2,2)))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(-1 + Power(x,2))*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
343 
344  term[37] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta2,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) + (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)))*Cos(Phi1)*hs*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*shs*(-(Power(gqL,4)*Power(1 + hs,2)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs)) - Power(gqR,4)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,2))*sh1*Power(sh2,2))/(98304.*Sqrt((-1 + Power(beta1,2))*(-1 + Power(beta2,2)))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(-1 + Power(x,2))*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
345 
346  term[38] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(Phi1 - 2*(phi + Phi1))*(-Power(gL,2) + Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*shs*(Power(gqR,4)*Power(1 + hs,2)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs) - Power(gqL,4)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*Power(shs,2))*sh1*Power(sh2,2))/(393216.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(-1 + x)*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
347 
348  term[39] = (Power(alpha,4)*beta1*Sqrt(1 - Power(beta1,2))*(Power(gL,2) + Power(gR,2))*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(Phi1 - 2*(phi + Phi1))*(Power(gL,2) - Power(gR,2) + (Power(gL,2) + Power(gR,2))*h1)*shs*(Power(gqL,4)*Power(1 + hs,2)*(x + beta1*beta2*x + hs - beta1*beta2*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs) - Power(gqR,4)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*Power(shs,2))*sh1*Power(sh2,2))/(393216.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(-1 + x)*Power(-1 + xW,4)*Power(xW,4)*(1 + hs)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
349 
350  term[40] = -(Power(alpha,4)*beta1*(Power(gqL,4) + Power(gqR,4))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(2*(phi + Pi))*(x + beta1*beta2*x + hs - beta1*beta2*hs)*(x + beta1*beta2*x + (-1 + beta1*beta2)*hs)*Power(shs,2)*Power(sh1,2)*Power(sh2,2))/(196608.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*Power(-1 - Power(beta1,2)*Power(beta2,2) + Power(x + beta1*beta2*x,2) + 2*beta1*beta2*hsdb,2));
351 
352  term[41] = (Power(alpha,4)*beta1*(-1 + Power(beta2,2))*(Power(gqL,4) + Power(gqR,4))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*Cos(2*(-Phi1 + Pi))*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(1 + x)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(1 + x)*hs)*Power(shs,2)*Power(sh1,2)*Power(sh2,2))/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*(1 + x)*Power(-1 + xW,4)*Power(xW,4)*Power(-1 - Power(beta1,2)*Power(beta2,2) + Power(x + beta1*beta2*x,2) + 2*beta1*beta2*hsdb,2));
353 
354  term[42] = (Power(alpha,4)*beta1*(-1 + Power(beta1,2))*(Power(gqL,4) + Power(gqR,4))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(2*(phi + Phi1))*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) - 4*(-1 + x)*hs)*(2 + Power(beta1,2) + Power(beta2,2) + 2*(Power(beta1,2) - Power(beta2,2))*x + (-2 + Power(beta1,2) + Power(beta2,2))*Power(x,2) + 4*(-1 + x)*hs)*Power(shs,2)*Power(sh1,2)*Power(sh2,2))/(786432.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + x,2)*Power(-1 + xW,4)*Power(xW,4)*Power(-1 - Power(beta1,2)*Power(beta2,2) + Power(x + beta1*beta2*x,2) + 2*beta1*beta2*hsdb,2));
355 
356  term[43] = -(Power(alpha,4)*beta1*Power(1 + beta1*beta2,2)*(Power(gqL,4) + Power(gqR,4))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*(1 + x)*Cos(2*(-phi - 2*Phi1 + Pi))*Power(shs,4)*Power(sh1,2)*Power(sh2,2))/(196608.*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + xW,4)*Power(xW,4)*Power(-1 - Power(beta1,2)*Power(beta2,2) + Power(x + beta1*beta2*x,2) + 2*beta1*beta2*hsdb,2));
357 
358  term[44] = (Power(alpha,4)*beta1*(Power(gqL,4) + Power(gqR,4))*Power(Power(gL,2) + Power(gR,2),2)*Power(M1,2)*Power(M2,2)*(1 + x)*Power((beta1 + beta2 - beta1*x + beta2*x)*Sqrt(beta1*beta2*(1 - Power(x,2))) + (1 + Power(beta1,2)*Power(beta2,2))*(-1 + Power(x,2)),2)*Power(shsdb,2)*Power(sh1,2)*Power(sh2,2))/(98304.*(-1 + Power(beta1,2))*(-1 + Power(beta2,2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M1,2) - Power(MZ,2),2))*(Power(gamma,2)*Power(MZ,2) + Power(Power(M2,2) - Power(MZ,2),2))*Power(Pi,3)*s*Power(-1 + Power(x,2),2)*Power(-1 + xW,4)*Power(xW,4)*Power(Power(-1 + beta1*beta2,2) - Power(x + beta1*beta2*x,2) + 4*beta1*beta2*Power(shs,2),2));
359 
360  double returnVal = 0.;
361  for (int i = 0; i < nterms; i++){
362  //std::cout << "term[" << i << "] = " << term[i] << std::endl;
363  if (term[i] != term[i]) {
364  std::cout << "term[" << i << "] isNaN" << std::endl;
365  term[i] = 0.;
366  }
367  returnVal += term[i];
368  }
369 
370  if (returnVal <= 0) returnVal = 1.e-40;
371 
372  //std::cout << "returnVal = " << returnVal << std::endl;
373 
374  return returnVal;
375 
376 }

Member Data Documentation

◆ h1j

RooRealProxy RooqqZZ_JHU::h1j
protected

Definition at line 54 of file RooqqZZ_JHU.h.

◆ h2j

RooRealProxy RooqqZZ_JHU::h2j
protected

Definition at line 55 of file RooqqZZ_JHU.h.

◆ hsj

RooRealProxy RooqqZZ_JHU::hsj
protected

Definition at line 57 of file RooqqZZ_JHU.h.

◆ m1j

RooRealProxy RooqqZZ_JHU::m1j
protected

Definition at line 52 of file RooqqZZ_JHU.h.

◆ m2j

RooRealProxy RooqqZZ_JHU::m2j
protected

Definition at line 53 of file RooqqZZ_JHU.h.

◆ mZZj

RooRealProxy RooqqZZ_JHU::mZZj
protected

Definition at line 59 of file RooqqZZ_JHU.h.

◆ Phi1j

RooRealProxy RooqqZZ_JHU::Phi1j
protected

Definition at line 58 of file RooqqZZ_JHU.h.

◆ phij

RooRealProxy RooqqZZ_JHU::phij
protected

Definition at line 56 of file RooqqZZ_JHU.h.


The documentation for this class was generated from the following files:
RooqqZZ_JHU::m2j
RooRealProxy m2j
Definition: RooqqZZ_JHU.h:53
RooqqZZ_JHU::h2j
RooRealProxy h2j
Definition: RooqqZZ_JHU.h:55
RooqqZZ_JHU::integratePartonicXS_Dh1Dh2DphDPh1_5
Double_t integratePartonicXS_Dh1Dh2DphDPh1_5(double m1_c, double m2_c, double h1_c, double h2_c, double phi_c, double hs_c, double Phi1_c, double mZZ_c, bool upType, bool flipAxis) const
Definition: RooqqZZ_JHU.cc:1227
hto_betacom::beta2
real *8, dimension(3:6) beta2
Definition: CALLING_cpHTO.f:2080
RooqqZZ_JHU::integratePartonicXS_Dh1DphDPh1_2
Double_t integratePartonicXS_Dh1DphDPh1_2(double m1_c, double m2_c, double h1_c, double h2_c, double phi_c, double hs_c, double Phi1_c, double mZZ_c, bool upType, bool flipAxis) const
Definition: RooqqZZ_JHU.cc:545
RooqqZZ_JHU::Phi1j
RooRealProxy Phi1j
Definition: RooqqZZ_JHU.h:58
RooqqZZ_JHU::h1j
RooRealProxy h1j
Definition: RooqqZZ_JHU.h:54
RooqqZZ_JHU::RooqqZZ_JHU
RooqqZZ_JHU()
Definition: RooqqZZ_JHU.h:23
RooqqZZ_JHU::partonicXS
Double_t partonicXS(double m1_c, double m2_c, double h1_c, double h2_c, double phi_c, double hs_c, double Phi1_c, double mZZ_c, bool upType, bool flipAxis) const
Definition: RooqqZZ_JHU.cc:217
RooqqZZ_JHU::hsj
RooRealProxy hsj
Definition: RooqqZZ_JHU.h:57
RooqqZZ_JHU::integratePartonicXS_Dh2DphDPh1_1
Double_t integratePartonicXS_Dh2DphDPh1_1(double m1_c, double m2_c, double h1_c, double h2_c, double phi_c, double hs_c, double Phi1_c, double mZZ_c, bool upType, bool flipAxis) const
Definition: RooqqZZ_JHU.cc:378
RooqqZZ_JHU::integratePartonicXS_Dh1Dh2Dph_3
Double_t integratePartonicXS_Dh1Dh2Dph_3(double m1_c, double m2_c, double h1_c, double h2_c, double phi_c, double hs_c, double Phi1_c, double mZZ_c, bool upType, bool flipAxis) const
Definition: RooqqZZ_JHU.cc:709
RooqqZZ_JHU::phij
RooRealProxy phij
Definition: RooqqZZ_JHU.h:56
dd_global::cout
integer cout
Definition: DD_global.F90:21
RooqqZZ_JHU::m1j
RooRealProxy m1j
Definition: RooqqZZ_JHU.h:52
RooqqZZ_JHU::mZZj
RooRealProxy mZZj
Definition: RooqqZZ_JHU.h:59
hto_betacom::beta1
real *8, dimension(3:6) beta1
Definition: CALLING_cpHTO.f:2080
RooqqZZ_JHU::integratePartonicXS_Dh1Dh2DPh1_4
Double_t integratePartonicXS_Dh1Dh2DPh1_4(double m1_c, double m2_c, double h1_c, double h2_c, double phi_c, double hs_c, double Phi1_c, double mZZ_c, bool upType, bool flipAxis) const
Definition: RooqqZZ_JHU.cc:1002